Weighted Euclidean Biplots
نویسندگان
چکیده
We construct a weighted Euclidean distance that approximates any distance or dissimilarity measure between individuals that is based on a rectangular cases-by-variables data matrix. In contrast to regular multidimensional scaling methods for dissimilarity data, the method leads to biplots of individuals and variables while preserving all the good properties of dimension-reduction methods that are based on the singular-value decomposition. The main benefits are the decomposition of variance into components along principal axes, which provide the numerical diagnostics known as contributions, and the estimation of nonnegative weights for each variable. The idea is inspired by the distance functions used in correspondence analysis and in principal component analysis of standardized data, where the normalizations inherent in the distances can be considered as differential weighting of the variables. In weighted Euclidean biplots we allow these weights to be unknown parameters, which are estimated from the data to maximize the fit to the chosen distances or dissimilarities. These weights are estimated using a majorization algorithm. Once this extra weight-estimation step is accomplished, the procedure follows the classical path in decomposing the matrix and displaying its rows and columns in biplots.
منابع مشابه
On Symmetry of Some Nano Structures
It is necessary to generate the automorphism group of a chemical graph in computer-aided structure elucidation. An Euclidean graph associated with a molecule is defined by a weighted graph with adjacency matrix M = [dij], where for i≠j, dij is the Euclidean distance between the nuclei i and j. In this matrix dii can be taken as zero if all the nuclei are equivalent. Otherwise, one may introduce...
متن کاملEcologically Meaningful Transformations for Ordination of Species Data. Oecologia: 129: 271-280. List of Figures
PCA biplots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Correlation biplots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Distance biplots . . . . . . . . . . . . . . ...
متن کاملPredictive nonlinear biplots: Maps and trajectories
When the difference between samples is measured using a Euclidean-embeddable dissimilarity function, observations and the associated variables can be displayed on a nonlinear biplot (Gower and Harding, 1988). Furthermore, a nonlinear biplot is predictive if information on variables is added in such a way that it allows the values of the variables to be estimated for points in the biplot. I will...
متن کاملMethods to evaluate wheat cultivar testing environments and improve cultivar selection protocols
Analysis of cultivar by environment (C E) interaction can improve efficiency of crop breeding efforts. Variety selection and recommendation based on wheat (Triticum aestivum L.) yield testing trials could possibly benefit from this type of analysis as well. The objectives of the present work were to evaluate methods to identify relevant testing environments and improve the predictive value of d...
متن کاملInverse Maximum Dynamic Flow Problem under the Sum-Type Weighted Hamming Distance
Inverse maximum flow (IMDF), is among the most important problems in the field ofdynamic network flow, which has been considered the Euclidean norms measure in previousresearches. However, recent studies have mainly focused on the inverse problems under theHamming distance measure due to their practical and important applications. In this paper,we studies a general approach for handling the inv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Classification
دوره 33 شماره
صفحات -
تاریخ انتشار 2016